为什么当lim x趋于正无穷,f(1/x)=A,则x趋向于0,limf(x)=A?
为什么当lim x趋于正无穷,f(1/x)=A,则x趋向于0,limf(x)=A?
lim f(x)=A x趋向于a limf(x^2)=A x趋向于a^2/1
设limf(x) x趋向于x0=A,limg(x) x趋向于 x0不存在,证明lim[f(x)+g(x)] x 趋向于x
高数 证明limf(x)=A【x趋于无穷大】与limf(x)=limf(x)=A【x分别趋于正无穷与负无穷】是充要条件
x趋向正无穷 lim[(x+a)/(x-a)]^x
函数有界且可导设函数y=f(x)在(0,正无穷)内有界且可导,则 当x趋向正无穷时,limf'(x)存在时,必有lim(
若lim[f(x)+f'(x)]=0,x趋于正无穷且f'(x)在0到正无穷上连续,证明limf(x)=limf'(x)=
为什么(x趋向正无穷时)lim x乘以ln[(x+a)/(x-a)]=lim x乘以{[(x+a)/(x-a)]-1}
若f(x)与g(x)可导,Lim f(x)=Limg(x)=0,且Limf(x)/g(x)=A,x趋于a.则
一道关于极限的题目已知当x趋向于正无穷,lim 3xf(x)=lim [4f(x)+6],则lim xf(x)=?
设f(x)在0到正无穷大上可导,f(x)>0,limf(x)=1(x趋向正无穷大),若lim[f(x+nx)/f(x)]
f(x)dx在[a,+无穷)上广义积分收敛,证明limf(x)=0 (x趋于无穷)