如图 AB为圆心点O的直径,从圆上一点C作弦CD垂直AB,角OCD的平分线交圆心O于P,求证弧AP等于弧BP.
如图 AB为圆心点O的直径,从圆上一点C作弦CD垂直AB,角OCD的平分线交圆心O于P,求证弧AP等于弧BP.
如图,AB为圆O的,从圆上一点C引弦CD⊥AB,作角OCD的平分线CP,交圆O于P点,连结PA,PB,求证PA弧=PB弧
如图,已知AB是圆O的直径,CD⊥AB于E点,∠OCD的平分线交圆O于P点,求证:弧AP=弧BP.
AB为圆O的一固定直径,它圆O分成上下两个半圆,自上半圆上一点C作弦CD垂直AB,角OCD的平分线交圆O于点P,
如图,AB是圆心O的直径,点C在圆心O上运动(与点A,B不重合),弦CD丄AB,CP平分角OCD交圆心O于点P,当点C运
AB是⊙O的直径,点C在⊙O上运动(与A,B不重合),弦CD⊥AB,CP平分∠OCD交⊙O于点P求证弧AP=弧BP(在线
已知AB为半圆O的直径,点P为AB上任意一点,以A为圆心AP为半径作圆A,圆A与半圆A相交于C,以点B为圆心BP为
已知AB为⊙O的弦从圆上任选一点因弦CD⊥AB,作∠OCD的平分线交⊙O于P点,连接PA,PB,求证:PA=PB
如图,AB为圆心O的直径,C为圆上一点,延长BC至D使CD=BC,连接AD过C作CE垂直AD于E,BE交圆心O于F
已知AB是圆O的弦(不是直径),从圆上任一点做弦CD垂直AB,做角OCD的角平分线交圆于点P,连接PA,PB求证:PA=
AB是圆O的直径,C是半圆上一点,CD垂直AB,交AB于D点,CP是角OCD的平分线,问点P是否随C点的变化而变化
如图1,AD为圆心O的直径,B,C为圆心O上两点,点C在弧AB上,且弧AB=弧CD,过A点做圆心O的切线,交BD于延长线