设f(x)可导且f'(x)有界,而g(x)=f(x)sin^2 x 则g“(0)=
设f(x)=g[xg^2(x)],其中g(x)可导,计算f'(x).
设f(x),g(x)都是(-∞,+∞)上的可导函数,且f'(x)=g(x),g'(x)=f(x),f(0)=1,g(0)
设f(x),g(x)是定义在[a,b]上的可导函数,且f`(x)>g`(x),令F(x)=f(x)-g(x),则F(x)
设f(x),g(x)是恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x)小于0.则当a小于x小于b时,有f(x
设f(x),g(x)是恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x)小于0.
设f(x),g(x)是定义域为R的恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x)
设f(x),g(x)是恒大于零的可导函数,且f`(x)g(x)-f(x)g`(x)
若f(x)与g(x)可导,Lim f(x)=Limg(x)=0,且Limf(x)/g(x)=A,x趋于a.则
设f(x)可导.且f(x)导数>0,f(0)=0,f(a)=b,g(x)是f(X)的反函数,求∫f(x)dx(上a下o)
设f(x),g(x)均可导,证明在f(x)的任意两个零点之间,必有f'(x)+g'(x)f(x)=0的实根
设f(x),g(x)均可导,证明在f(x)的任意两个零点之间,必有f'(x)+g'(x)f(x)=0
设f(x)与g(x)均为可导函数,且有g(x)=f(x+c),其中c为常数,利用倒数的定义证明g’(x)=f’(x+c)