x y z=1及三个坐标平面所围立体的外侧,范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 06:57:33
计算由坐标面,平面x=4,y=4及抛物面z=x*x+y*y+1所围立体的体积

v=∫∫f(x,y)dσ区域D=∫(0-4)dx∫(0-4)x^2+y^2+1dy=∫(0-4)dx(x*x*y+1/3y*y+y)|(4-0)=∫(0-4)(4*x*x+76/3)dx=(4/3x^

重积分算体积求旋转抛物面z=x^2+y^2,三个坐标平面及平面x+y=1所围有界区域的体积.答案是1/6,我怎么觉得这图

在第一象限是封闭的,用曲面积分算,在xy平面的投影,二重积分(x²+y²)dxdy=∫从0到1dy∫从0到1-y(x²+y²)dx,答案就是1/6.

证明:曲面xyz=a的三次方(a>o)上任一点的切平面与三个坐标面所围成的体积为一定数.

设曲面上任意一点坐标(x0,y0,z0)满足x0*y0*z0=a^3该点处法向量=(y0*z0,x0*z0,x0*y0)切平面方程为:y0*z0*(x-x0)+x0*z0*(y-y0)+x0*y0*(

证明曲线xyz=1任意点的切平面与三个坐标面围成的体积是常数?

设曲面上任意一点坐标(x0,y0,z0)满足x0*y0*z0=1该点处法向量=(y0*z0,x0*z0,x0*y0)切平面方程为:y0*z0*(x-x0)+x0*z0*(y-y0)+x0*y0*(z-

求由z=x+y+1,x+y=1及三个坐标平面围成的立体的体积

再问:谢谢与三个坐标面围成的意思是所围图形在第一卦限对吧再答:是的,是一个顶面为z=x+y+1,底为z=0,周围为x=0,y=0和x+y=1的图形。

求平面x/2+y+z=1 与三个坐标面所围立体的体积

说明平面与坐标面的·节距是a=2,b=1,c=1易得底面三角形面积1/2×2×1=1高为1,所以易得所围成体积O-ABC为1×1×1/3=1/3

计算由曲面z=x^2+y^2,三个坐标面及平面x+y=1所围立体的体积,答案是1/6,

求由x=0y=0x+y=1围成的三棱柱的体积下底为z=0上底为z=x^2+y^2(圆锥)=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz=∫(0,1)dx∫(0,1-x)[z](0,

计算三重积分∫∫∫2dxdydz,(Ω在∫∫∫下方),其中Ω为三个坐标及平面x+y+z=1所围

∫∫∫2dxdydz=2∫∫∫1dxdydz被积函数为1,积分结果为区域的体积,下面只需计算三个坐标面与x+y+z=1所围区域体积即可.体积为:(1/3)(1/2)*1*1*1=1/6因此本题结果是1

计算由三个坐标面,平面x=2. y=2及曲面z=x的平方+y的平方+2所围立体的体积怎么算?

以下计算的是由坐标面,平面x=0,x=2,y=0,y=2,z=0及曲面z=x²+y²+2所围立体的体积.采用二重积分法:I=(0,2)∫(0,2)∫(x²+y²

求平行于平面2x+y+2z+5=0且与三个坐标平面所围成的四面体体积为1个单位的平面方程

设该平面的方程为2x+y+2z+t=0,得其x,y,z轴的截距分别为-t/2,-t,-t/2,于是得该四面体的体积为|t*t*t/4|=1,于是的t为3次根号4或者负3次根号4

用二重积分计算由抛物面z=x^2+y^2及坐标平面和平面x+y=1所围成立体的体积

二重积分的几何意义是曲顶柱体的体积:曲顶柱体的顶面是:z=x^2+y^2,底面区域D是xOy面内由x轴、y轴、x+y=1所围V=∫∫(x^2+y^2)dxdy=∫[0,1]∫[0,1](x^2+y^2

计算三重积分,其中V为三个坐标面及平面 x+y+z=1 所围成的闭区域

原式=∫dz∫dy∫xdx=∫dz∫(1/2)(1-y-z)^2dy=(1/2)∫dz∫[(1-z)^2-2(1-z)y+y^2]dy=(1/6)∫(1-z)^3*dz=(1/6)∫(1-3z+3z^

计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域

Ω为三个坐标面及平面x/2+y+Z=1所围成的区域,原式=∫zdz∫dy∫dx=∫zdz∫2(1-y-z)dy=∫z[2(1-z)^-(1-z)^]dz=∫(z-2z^+z^3)dz=[(1/2)z^

求曲面xyz=a³(a>0)的切平面与三个坐标面所围成的四面体的体积

曲面xyz=a³在(x0,y0,z0)的法方向是{y0z0,z0x0,x0y0}.切平面是:y0z0(x-x0)+z0x0(y-y0)+x0y0(z-z0)=0.它在三个坐标轴上的截距分别是

计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

原式=∫xdx∫dy∫dz=∫xdx∫(1-x-2y)dy=∫x[(1-x)²/4]dx=1/4∫(x-2x²+x³)dx=(1/2-2/3+1/4)/4=1/48.

计算三重积分∫∫∫ xydxdydz 其中Ω为三个坐标面及平面x+y+z=1所围成的闭区域

就用直角坐标计算再答:再问:∫(0,1)xdx∫(0,1-x)dy∫(0,1-x-y)dz我这么算怎么我算到1/8的?再答:不是被积函数是xy么再问:∫(0,1)xdx∫(0,1-x)ydy∫(0,1

∫∫∫=xdxdydz其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

第一步先把这个拆成三个维度的.其中x的范围0-1,y的范围0-[(1-x)/2],z的范围0到(1-x-2y)写起来是∫xdx∫dy∫dz这个写起来还真不好写,然后全部整理成dx,就可以得到:(时间不