(-1)^n-1*lnn 根号n的收敛性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:10:17
判断级数lnn/(n^2+1) 的敛散性

ln(n)=o(n),即ln(n)远小于n.而n/(n^2+1)~n/n^2=1/n收敛于0,因此ln(n)/(n^2+1)收敛于0.如果你要说的是级数求和的收敛性,也是收敛的.ln(n)=o(n^(

lim n^λ(ln(1+n)-lnn)Vn=3,讨论级数Vn和的敛散性

limn^λ(ln(1+n)-lnn)Vn=3limn^(λ-1)(ln(1+1/n)^n)Vn=3limVn/n^(1-λ)=31-λ>1即λ

判断级数n从3到无穷大(1-1/lnn)的n次方的敛散性

用拉阿伯判别法,证明n(a[n+1]/a[n]-1)<-1,从而级数收敛

求极限lim{n[ln(n+1)-lnn] n→∞

①等价无穷小量替换:ln(1+t)t(t->0)lim(n→∞)n[ln(n+1)-lnn]=lim(n→∞)nln[(n+1)/n]=lim(n→∞)nln(1+1/n)=lim(n→∞)n*(1/

证明:ln2/3+ln3/4+ln4/5+...lnn/(n+1)

证:ln2/3+ln3/4+ln4/5+...lnn/(n+1)=(ln2-ln3)+(ln3-ln4)+(ln4-ln5)+...+[lnn-ln(n+1)]=ln2-ln(n+1)因n>1n+1>

根号(n+1)+n

伪命题啊n=97右边=97!我看了你们的追问追答发现你算错了...大哥证明根号(n+1)-根号n大于根号(n+3)-根号(n+2)分子有理化之后(左边上下同乘根号(n+1)+根号n,右边上下同乘根号(

判断无穷级数∞∑(n=2) =(-1)^n / lnn的敛散性

令u_n=1/lnn,则{u_n}单调递减趋于0.所以这个级数是Leibniz型级数,一定收敛.该级数条件收敛,因为∑u_n是不收敛的,这是因为u_n>1/n,而∑1/n发散

判别级数∑(-1)^n*(lnn)^2/n的敛散性

/>lim(n->∞)(lnn)^2/n=0f(x)=(lnx)²/xf'(x)=[2lnx-(lnx)²]/x²=lnx(2-lnx)/x²当x

(lnn)^1/n级数敛散性咋判断啊?

取对数lim(n→∞)ln(lnn)^1/n=lim(n→∞)ln(lnn)/n罗必塔法则=lim(n→∞)1/lnn*1/n/1=lim(n→∞)1/n*(lnn)=0所以(lnn)^1/n→1(n

∑lnn ∑(lnn分之1) ∑(lnn分之n)敛散性

首先可根据级数收敛的必要条件,级数收敛其一般项的极限必为零.反之,一般项的极限不为零级数必不收敛.这样,∑lnn、∑(lnn分之n)一般项的极限为无穷,必不收敛.若一般项的极限为零,则可选择某些正项级

∑1/[lnn^(lnn)], n∈[2,∞],求该式的敛散性

收敛的当n足够大时(lnn)^lnn>n^2因为当n趋于无穷大时limn^2/(lnn)^lnn=lim2n/((lnn)^lnn*(ln(ln(n))/n+1))=lim(2n/(lnn)^lnn)

正项级数1/n^2*lnn的敛散性

lnx的增长率永远比不上任何一个幂函数的增长率,所以lnn

讨论级数∑[n=1到∞](-1)^n/(n-lnn)的敛散性

用莱布尼兹定理呀,可以看出1/(n-lnn)是单减的,这个你可以用构造函数来看,F(x)=1/(x-lnx)求导F(x)再问:当n趋于无穷时,Un为什么=0啊

∑ [(n+1)^lnn]/(lnn)^n 的敛散性

设an=[(n+1)^lnn]/(lnn)^n(an)^(1/n)=[(n+1)^(lnn/n)]/(lnn)n趋向于无穷大时(n+1)^(lnn/n)的极限为1因此n趋向于无穷大时,(an)^(1/

利用定积分定义求lim(n→∞)[(1/n)*lnn!-lnn]

原式=lim(n→∞)1/n(ln(1/n)+ln(2/n)+ln(3/n)+...+ln(n/n))=∫(0→1)lnxdx=xlnx|(0→1)-∫(0→1)dx=0-x|(0→1)=-1再问:1

求极限:lim{n[ln(n+1)-lnn]}的极限是

楼上解错了,洛必达法则只用于函数,而不是用于数列.点击放大、再点击再放大:

求极限n【ln(n-1)-lnn】

以下各式省略lim(n→∞):n×[ln(n-1)-ln(n)]=n×ln[(n-1)/n]=n×ln(1-1/n)=ln[(1-1/n)^n]=ln{[(1-1/n)^(-n)]^(-1)}=1/{

级数 (-1)^n lnn/n^2 如何判断它是否是条件收敛?

再问:lnn/n^2为什么小于根号n/n^2啊?再答:很容易证明啊,令f(x)=ln(x)-√x,然后求导f'(x)=1/x-1/(2√x),当x>2时f'(x)

求当n趋近于无穷时,n[ln(n-1)-lnn]的极限

n→∞,limn[ln(n-1)-lnn]=limn*[ln(n-1/n)]=lim[ln(1-1/n)^n]因为函数f(x)=lnx连续,所以归结得:lim[ln(1-1/n)^n]=ln[lim(

求证:ln2/2+……lnn/n<n^2/2(2n+1)

下面给出两种思路,但没有完整计算:方法一:n=2时,直接验证.当n>2时,用归纳法,只需验证:n^2/2(n+1)-(n-1)^2/2n>lnn/n---》0右边=(n^3-(n-1)^2(n+1))