(-1)^n(1 n)的级数收敛还是发散

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:23:22
级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛

俺来回答一下,马上拍照再答:

级数收敛证明(-1)^n/n这个级数怎么证明收敛?

设an=1/n.∵(1)an=1/n>1/(n+1)=an+1,(2)an-->0(n-->∞),∴根据莱布尼茨判别法知,交错级数∑(-1)^n/n收敛.

判断级数∑(N=1,∞) (-1)^N/(N-lnN)的收敛性,是绝对收敛还是条件收敛

lim(n→∞)[1/(n-lnn)]/(1/n)=1又lim(n→∞)[1/(n-lnn)]=0u(n+1)-un

级数∑[(-1)^(n-1)](x^n/n)的收敛区间,和函数

∑[(-1)^(n-1)](x^n/n)求导得:∑[(-1)^(n-1)]x^(n-1)=∑(-x)^(n-1)(n从1起)=1/(1+x)积分得:∑[(-1)^(n-1)](x^n/n)=ln(1+

级数(-1)^n / n 为啥收敛 ?怎么证明?

交错级数,用莱布尼兹判敛法再问:莱布尼茨的的前提条件之一不是前项大于后项吗这里怎么满足。。。求教再答:那里面所说的是把(-1)^n去掉之后剩下的正项,在这里就是1/n

求级数∑(n+1)(n+2)x^n的收敛区间,并求和函数

令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1

an=(-1)^n-1 (e^n/3^n) 证明其收敛,并求出收敛级数的和

an可以看成-(-e/3)^n即看成公比为-e/3的几何级数.当然是收敛的和为=-(e/3)/(1+e/3)=-e/(3+e)再问:答案是e/(3+e)再答:那算错了,没有那个负号是和为=(e/3)/

级数1/n+1是收敛的还是发散的?

如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.

求级数的收敛半径∑((1/2∧n)+3∧n)×x∧n

再问:错的,答案是三分之一再答:

证明:级数∑(n=1,∞) 1/(n²+2n²)是收敛的.

题目错了吧,应是“1/(n³+2n²)”吧1/(n³+2n²)1/(n³+2n²-3n)=1/[n(n+3)(n-1)]=(1/2)[(n+

级数(求和)1\n^x的收敛域为多少

讨论x-级数:1+1/2^x+1/3^x+...+1/n^x+.的敛散性,其中x为任意实数.当x>1时,将x-级数按一项,两项,四项,八项,.括在一起,得到:级数(1)1+(1/2^x+1/3^x)+

证明级数(-1)^n/n是收敛的

设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛

-1的n次方,的级数收敛吗,求证明

∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能

级数1/2的根号n次方如何证明收敛

a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)

求级数∑∞n=1(1/2n)(x^n^2)的收敛域

级数为   ∑{n>=1}[x^(n^2)]/(2n),由于   lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)|  =lim(n→inf.)|x^

级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.

只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/