(-1)^n ln(1 n)绝对收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:25:12
因为lim(n->∞)sin1/n=0而sin1/n递减所以级数(-1)^nsin1/n收敛而级数sin1/n由lim(sin1/n)/(1/n)=1而级数1/n发散即级数sin1/n发散所以原级数条
发散.∑|(-1)^n+1*n!/2n^2|=∑n!/2n^2,lim(n→∞)U(n+1)/Un=lim(n→∞)n^2/(n+1)=+∞,所以原级数发散.
将ln(n+1)看作和式:ln(n+1)=[ln(n+1)-lnn]+[lnn-ln(n-1)]+...+[ln2-ln1]由拉格朗日中值定理:ln(k+1)-lnk=1/x_k(k+1-k)=1/x
lim(n→∞)[1/(n-lnn)]/(1/n)=1又lim(n→∞)[1/(n-lnn)]=0u(n+1)-un
我想答案应该是B.先看看A管,就设A管的液面高度差为h吧.则A管气体与外面气体的压强差为pgh,当升降机加速下降时,所有物体都失重,相当于g减小,则pgh减小.为了重新达到平衡,A管内的气体压强就得降
(1)(2)(4)(5)(6)都是绝对收敛的.(1)取绝对值后即∑1/(2n-1)².由1/(2n-1)²≤1/n²,而∑1/n²收敛,用比较判别法即得.(2)
|sin(na)|
显然级数为莱布尼茨级数,由于通项绝对值趋于0,故收敛而∑(n=1到∞)sin(π∕(n+1))的通项sin(π/(n+1))~π/(n+1)且∑(n=1到∞)π∕(n+1)发散,故原级数条件收敛按照你
因为后项比前项的绝对值=[(n+1)!/(n+1)^(n+1)]/[n!/n^n]=n^n/(n+1)^n=1/(1+1/n)^n趋于1/e
通项sin(nπ+1/√(n+1))=(-1)^n×sin(1/√(n+1)).通项加绝对值后的级数是∑sin(1/√(n+1)),在n→∞时,sin(1/√(n+1))等价于1/√(n+1),而级数
因为vn=ln(1+1n)单调递减,且limn→∞vn=0由莱布尼茨判别法知级数∞n=1un=∞n=1(−1)nvn收敛,而un2=ln2(1+1n)≈1n,且∞n=11n发散,因此∞n=1un2也发
显然发散,级数收敛,其每项都最终收敛到0,而这个级数的每项最终都不收敛到零,级数自己怎么可能收敛再问:ln(n/(2n+1))虽然本身自己发散但是在远原技术中他的一项减去第二项再加第三项,这样你就能保
当p1时,绝对收敛.当n足够大时,其一般项的绝对值为tan1/n^p-1/n^p(因为当x很小的时候有tanx>x),而lim(tan1/n^p-1/n^p)/(1/n^p)=0(n趋于无穷,罗比塔法
条件收敛再问:为什么条件收敛?再答:本身可以用莱布尼茨证收敛再答:绝对值用p级数证再答:绝对值用p级数证再问:当是1/2的时候是条件。。明白了,多谢了
级数通项绝对值小于等于1/n^2,所以绝对收敛.
首先1/lnn>1/n故级数1/lnn发散又:1/lnn>1/ln(n+1)且1/lnn趋于0由莱布尼兹交错级数判定定理,级数收敛原级数条件收敛
p>1,绝对收敛;0
∑(-1)^n[1-cos(1/n)]对应的正项级数∑[1-cos(1/n)]=∑2{sin[1/(2n)]}^2后者收敛,则原级数绝对收敛.
sin(2/n)>sin(2/n+1),limsin(2/n)=0,莱布尼兹定理,收敛limsin(2/n)/(2/n)=1,∑2/n发散,条件收敛
{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛