设随机变量x的数学期望值为E(X)=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:43:34
设两个独立随机变量X,Y的数学期望分别为1与5,则E(XY)=(?)

X与Y独立时,E(XY)=E(X)E(Y)=1*5=5,答案是(B).即经济数学团队帮你解答,请及时采纳.

设随机变量X的概率分布为P{X=k}=e-1/K!

P(1)E(X)=D(X)=1E(X^2)=2P(X=EX^2)=P(X=2)=1/(2e)如有意见,欢迎讨论,共同学习;如有帮助,

设随机变量X的概率密度为 f(x)=e^-x,x>0 求Y=2X,Y=e^-2x的数学期望

(1).EY=2E(X)=2(2)E(Y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3如有意见,欢迎讨论,共同学习;如有帮助,

设随机变量X的概率密度为fX(x)=(1/2)*e^(-|x|),(-∞

楼主大大,这显然是概率论和数理统计的问题,怎么会是现行代数呢?解法如下:概率密度函数f(x)=1/2*e^(-|x|),说明一下,由于积分号打不出来,暂时用∫代表,∫[a,b]中括号内分别表示积分的上

设随机变量X的分布律为如下,求(1)Y=2X+1的分布律(2)Y的数学期望值与方差 X 1 2 3 Pk 1/6 1/3

(1)、随机变量X的分布律为X123Pk1/61/31/2故可以知道Y=2X+1可以取3,5,7,其对应的概率不变故Y=2X+1的分布律为:Y357P1/61/31/2(2)、由Y的分布律易求得Y的数

设随机变量x的数学期望与方差均存在且D(x)>0,称x*=(x-E(x))/√D(x)为x的标准化的随机变量,证明:E(

这个不需要证明对任意的随机变量的分布经过标准化处理后都服从标准正态分布N(0,1)再问:那个原题就是这样.....应该也有个推导过程吧?再答:E(x*)=E[x-E(x)/√D(x)]=[E(x)-E

设随机变量X=e^y服从参数为e的指数分布.求随机变量Y的概率密度函数

先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e

设随机变量X的数学期望存在,则E(E(E(X)))= .

E(X)已经是一个数,它的期望还是它本身E(X)

设随机变量x的密度函数为f(x)=Ae(e的指数是:-|x|.)

(1).∫[-∞,+∞]f(x)dx=∫[-∞,0]Ae^xdx+∫[0,+∞]Ae^(-x)dx=A+A=1,A=1/2.(2).x=0时,F(x)=∫[-∞,0](1/2)e^tdt+∫[0,x]

设随机变量X服从参数为1的指数分布,则数学期望E{X+e-2X}= ___ .

/>∵X服从参数为1的指数分布,∴X的概率密度函数f(x)=e-x,x>00,x≤0,且EX=1,DX=1,∴Ee-2x=∫+∞0e-2x•e-xdx=-13e-3x|+∞0=13,于是:E(X+e-

随机变量X的数学期望E(X)是平均值吗?他是怎么样的平均值?设X服从[a,b]上的均匀分布,则X的史学期望值EX

是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么

设随机变量X的概率分布密度为f(x)=1/2e^-|x|,x属于R,求X的数学期望和方差.

密度函数关於y轴对称,偶函数,期望肯定是0E(X²)=1/2{∫(~0)x²e^(x)dx+∫(0~)x²e^(-x)dx}=(1/2)2∫(0~)x²e^(-

设随机变量X的数学期望存在,证明随机变量X与任一常数a的协方差为零

用定义就能证明吧cov(x,y)=EXY-EX*EY设Y是个常数ccov(x,c)=E(cX)-E(X)*E(c)=cEX-cEx=0也可以用这个公式证明D(X+Y)=DX+DY+2COV(XY)_爱

求随机变量X的平方的期望值和方差

EX=0,DX=1,E(X^2)=DX+(EX)^2=1X服从标准正态分布,X^2服从自由度为1的κ方分布,D(X^2)=2

设随机变量服从参数为5的指数分布,则它的数学期望值为多少

0.21/λ=1/5=0.2根据0—1分布,数学期望p方差p(1-p);二项分布(贝努里概型),数学期望np方差np(1-p);泊松分布,数学期望λ方差λ;均匀分布,数学期望(a+b)/2方差[(b-

随机变量X服从在区间(2,5)上的均匀分布,则X的数学期望值E(X)的值为多少

套用均匀分布的期望公式,可得EX=(2+5)/2!望楼主采纳!