设随机变量X的数学期望与方差均为20,试给出P(0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 06:57:34
设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而X与Y的相关系数为(-0.5),则p{|X+Y|=?

E(ξ+η)=E(ξ)+E(η).E(X+Y)=E(X)+E(Y)=0.X+Y的数学期望为0D(X+Y)=D(X)+D(Y)+2COV(X,Y)ρXY=COV(X,Y)/√D(X)√D(Y),称为随机

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求数学期望和方差

泊松分布P{X=k}=(λ^k)·e^(-λ)/k!P{X=1}=λ·e^(-λ)P{X=2}=λ²·e^(-λ)/2因为P{X=1}=P{X=2}所以λ·e^(-λ)=λ²·e^

设随机变量X在区间[-1,2]上服从均匀分布;随机变量(如图),求Y与Y^2的期望、方差.

首先X是连续型随机变量,取任何一个定值的概率都是0,因此X=0和X=1的概率是0,也就没有0和2了.其次,均匀分布的随机变量在某区间取值的概率正比于该区间长度,且总概率为1,因为X分布在[-1,2],

设随机变量x服从(0,1)上的均匀分布,求Y=e^X的数学期望和方差

XU(0,1)密度函数:等于:1当0再问:这是标准答案了吧?再答:按公式计算而得:若x的概率密度函数为f(x),那么随机变量x的函数g(x)的数学期望和方差分别为:E[g(x)]=∫g(x)f(x)d

设随机变量x服从(0,1)上的均匀分布,Y=e^x 求y的数学期望 和 方差

楼上方差错了方差(x*(e^x-1)^2在(0,1)上的积分)

设随机变量X,Y的数学期望与方差都存在,若Y=-3X+5,则相关系数 =_________.

-1根据随机变量的数字特征公式推就行了再问:我想知道具体算的过程啊~~泪奔~~再答:大概过程如图协方差和期望方差的转化方差期望的变形公式等查书如果没书我也没办法了实在懒得打公式了

设随机变量X的概率密度为.(1)求θ的值;(2)求X的分布函数;(3)求X的数学期望与方差.

1、P(X>1)=7/8所以P(X≤1)=1-7/8=1/8而P(X≤1)=∫(-∞,1)f(x)dx=∫(-∞,1)3x³/θ³dx=3/4θ³x^4|(-∞,1)=3

随机变量的数字特征 数学期望与方差

15E(X+Y+Z)=E(X)+E(Y)+E(Z)=1D(X+Y+Z)=D(X)+D(Y)+D(Z)+2[根号(D(X)D(Y))pxy+根号(D(X)D(Z))pxz+根号(D(Y)D(Z))pyz

设随机变量x的数学期望与方差均存在且D(x)>0,称x*=(x-E(x))/√D(x)为x的标准化的随机变量,证明:E(

这个不需要证明对任意的随机变量的分布经过标准化处理后都服从标准正态分布N(0,1)再问:那个原题就是这样.....应该也有个推导过程吧?再答:E(x*)=E[x-E(x)/√D(x)]=[E(x)-E

设随机变量X与Y独立,N(μ1,σ1),N(μ2,σ2),求:随机变量函数Z=XY的数学期望与方差

由于X与Y独立,故期望E(Z)=E(XY)=E(X)E(Y)=μ1μ2;方差D(Z)=D(XY)=E(XY*XY)-E(XY)*E(XY);E(XY*XY)=E(X^2*Y^2),X^2与Y^2也独立

设随机变量的分布密度函数为,试求x的密度函数,数学期望和方差.F(X)...

先通过随机变量X的分布函数F(x)求导得到其概率密度函数f(x),再利用期望和二阶矩的定义式求出E(x)和E(x^2),进而得到方差好好看看概率论的课本

随机变量X的数学期望

解题思路:本题主要充分理解正态分布的意义,u即是数学期望,也是正态分布密度函数的对称轴.解题过程:正态分布是连续型的随机变量,记作X-N(u,g2),其中u为期望,也是正态分布密度函数的对称轴,g2是

设随机变量X的概率分布密度为f(x)=1/2e^-|x|,x属于R,求X的数学期望和方差.

密度函数关於y轴对称,偶函数,期望肯定是0E(X²)=1/2{∫(~0)x²e^(x)dx+∫(0~)x²e^(-x)dx}=(1/2)2∫(0~)x²e^(-

设常数a与b为随机变量X的一切可能取值中的最小值与最大值,EX,DX分别为X的数学期望与方差

1).显然.(2).DX=E(X-EX)^2=E[(X-(a+b)/2+(a+b)/2-EX)^2]=E[(X-(a+b)/2)^2+((a+b)/2-EX)^2+2(X-(a+b)/2)((a+b)

设随机变量X的数学期望存在,证明随机变量X与任一常数a的协方差为零

用定义就能证明吧cov(x,y)=EXY-EX*EY设Y是个常数ccov(x,c)=E(cX)-E(X)*E(c)=cEX-cEx=0也可以用这个公式证明D(X+Y)=DX+DY+2COV(XY)_爱