已知MN是△ABC的中位线,点P在MN上,BP,CP
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:29:44
1)∵AB⊥AM又∵AB⊥PQ∴AM//QP∴∠QPA=∠PAM∵AB⊥PQ,AC⊥MN∴∠AQP=∠ANM∵AQ=AM∴△AQP≌△ANM∴AP=AM,QP=AN∴∠APM=∠AMP=∠BPC∵AB
1、证明:∵∠DAB+∠EAC=90°,∠EAC+∠ACE=90°,∠DAB+∠DBA=90°∴∠DAB=∠ACE,∠DBA=∠EAC∵在△BDA和△AEC中{∠DAB=∠ACE,∠DBA=∠EAC,
因为BD⊥MN,CE⊥MN,所以∠BDA=∠AEC=90°因为BD=AE,AB=CA,所以直角三角形BDA全等于直角三角形AEC所以∠DAB=∠ECA因为∠ECA+∠EAC=90°所以∠DAB+∠EA
证明:过A作CB平行线,交CD延长线于F∵CN=MN∴∠1=∠3=∠4(等边对等角、对顶角)又 AF//CB∴∠1=∠F(内错角相等)∴∠4=∠F∴AM=AF(等角对等边)∵CD是△ABC的
过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证
设MN=1.∵黄金分割,MP>NP∴MP/MN=NP/MP∴(1-NP)/1=NP/(1-NP)1-2NP+NP²=NPNP²-3NP+1=0∴NP=(3-√5)/2其中(3+√5
1、过G作GD垂直ABGE垂直AC,作AF垂直MN,连接AG,BG由于G是中心,则AG=BG=根号3/3GD=GE=根号3/6因此AF=AG*sin(π-a)=AG*sina=根号3*sina/3MG
证明:因为点A在直线MN上且角BAC等于90度,则角BAD加角EAC等于90度,又因为角ADB和角AEC等于90度,则角BAD等于角ECA,角DBA等于角EAC,又因为AB=AC,则三角形ABD和CA
B∵AD是∠CAB的平分线,∴∠CAD=∠BAD,∴A正确;∵BE不一定垂直AC,∴无法判断OE、OF是否相等,∴B错误;∵MN是边AB的垂直平分线,∴AF=BF,OA=OB,∴C、D正确.故选B.
(1)证明:∵CE平分∠BCO,CF平分∠DCO,∴∠OCE=∠BCE,∠OCF=∠DCF,∴∠ECF=12×180°=90°;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由如下:∵MN∥
AB//MN,BC//MNAB//BC又因有公共点,故ABC共线
证明:MN=AC连接CM∵△ABC是Rt△∴MC=1/2AB∵M是AB的中点∴AM=1/2AB∴AM=CM∴∠MCA=∠MAC∵MN‖AC∴∠ANM=∠MAC∴∠ANM=∠MCA∴∠MAN=∠AMC∴
(1)证明:∵由题意可知,BD⊥MN与D,EC⊥MN与E,∠BAC=90°,∴∠BDA=∠CEA=∠BAC=90°,∴∠DAB+∠EAC=90°,∠ECA+∠EAC=90°,∴∠DAB=∠ECA,在△
A点不动,直接将B、C两点关于直线MN对称之后,连接三点,就是你要的三角形,叙述还可以吧
1.由题可知,角BCE=角ECA,角ACF=角FCD,又因为MN‖BC,所以角BCE=角CEF,角FCD=角EFC故角ECA=角CEF,角ACF=角EFC所以EO=OC,OC=OF所以EO=FO2,当
过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证
当点C在线段AB上时,∵AB=8,BC=2,M、N分别是AB、BC的中点,∴AM=BM=½AB=4,BN=CN=½BC=1∴MN=BM-BN=½AB-½BC=4
第一题为7cm再问:不用了我采纳我写完了
因为△ABC和△DEF关于直线MN对称,所以△DEF≌△ABC(这是轴对称的性质),于是∠D=∠A=45°,又∠E=100°,由三角形的内角和是180°,可得∠F=35°.
AM:AN=MD:DN=C三角形BDM:C三角形DNC=(AB+BD):(AC+CD)=(4+8/5):(4+12/5)=7/8