如图,在△ABC中∠B=∠C,AB的垂直平分线l交AB与于点D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:22:40
1.在△ABC中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数 2.如图,在△ABC中,∠B=45°,

1.在△ABC中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数∵∠B-∠A=5°∴∠B=5°+∠A∵∠C-∠B=20°∴∠C-(5°+∠A)=20°即∠C=25°+∠A∵∠A+∠B+

如图,已知:在三角形ABC中,AB=c,BC=a,∠B=α,求△ABC的面积.

1/2(acsinα)再问:可以给具体过程么?亲~再答:1、以BC为底做一条高AD;2、AD=csinα3、以BC为底边,AD为高,根据三角形面积公式S=1/2(acsinα)

如图,△ABC中,∠A:∠B:∠C=3:5:10,又△ABC

解题思路:先求三角形ABC的各角的度数,再分析解答。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com

如图,在△ABC中,已知AC=6cm,∠C=75°,∠B=45°,求△ABC的面积.

过点C作CD⊥AB于点D.∵∠ACB=75°,∠B=45°,∴∠A=60°.则在Rt△ADC中,CD=AC•sin60°=33cm,AD=AC•cos60°=3cm,在Rt△BDC中,BD=CDtan

如图,在△ABC中,∠B=∠C,AE平分△ABC的外角∠CAD.判断AE与BC是否平行,并说明理由

因为∠CAD是△ABC的外角所以∠CAD=∠B+∠C(这个应该很容易理解吧)因为∠B=∠C,所以∠C=1/2∠CAD因为AE平分∠CAD,所以∠CAE=1/2∠CAD所以∠CAE=∠C由内错角相等,两

如图,在△ABC中,已知∠C=105°,∠B=45°,BC=2,求ABC的面积及内切圆的半径.

过点C作CD⊥AB于D∠B=45,∠BDC=90所以根据勾股定理CD²+BD²=BC²BD=CD所以CD=BD=√2∠A=180-∠B-∠C=30在Rt△ADC中,AC=

如图,在Rt三角形ABC中,∠C=90°,b+c=24 角A-角B=30°,求a、b、c

∵Rt△ABC中,∠C=90°∴∠A+∠B=90°∵∠A-∠B=30°∴∠A=60°,∠B=30°根据特殊直角三角形的性质,得:b=(1/2)c,a=(√3)b∵b+c=24∴(1/2)c+c=24c

已知:如图,在△ABC中,∠B=45°,∠C=30°,AB=根号2,求△ABC的面积.

过A做AO垂直BC交BC于O在等腰直角三角形ABO中,△ABO的面积为0.5在直角三角形ACO中,AO=1,∠C=30°,△ACO的面积为根号3/2△ABC的面积为(1+根号3)/2

在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图(1),根据勾股定理则a^2+b^2=c^2.若△ABC

当角C大于90度时,有c^2大于a^2+b^2当角C小于90度时,有c^2小于a^2+b^2可以过A做AD垂直于BC交BC于D,当角C小于90时:有,c^2=AD^2+BD^2a^2=AD^2+CD^

已知,如图,在△ABC中,AB=c,AC=b,锐角∠A=α(1)BC的长(2)三角形ABC的面积

解三角形常用到余弦定理和正弦定理,可以利用已知的边和角求出未知的边和角,其中余弦定理可以表示成BC^2=AB^2+AC^2-2AB*AC*cosA,正弦定理表示成a/sinA=b/sinB=c/sin

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,∠AED=2∠C,

证明:∵AD是△ABC的角平分线,∴∠BAD=∠EAD,∵∠B=2∠C,∠AED=2∠C,∴∠B=∠AED,在△ABD和△AED中,∠BAD=∠EAD∠B=∠AEDAD=AD,∴△ABD≌△AED(A

如图,在Rt△ABC中,∠ACB=90°,∠ABC=62°,将△ABC绕顶点C旋转到△A′B′C的位置,使顶点B恰好落在

∵在Rt△ABC中,∠ACB=90°,∠ABC=62°,∴∠A=90°-62°=28°,由旋转的性质可知BC=B′C,∠A′B′C=∠B′BC=∠ABC,∴旋转角∠BCB′=∠ACA′=180°-∠A

如图在△ABC中,∠B=35°,∠C=70°.请你用一条线段将△ABC分割成两个等腰三角形

作线段AD,使∠ABD=35°交BC于点D,则有△ABD中,∠ABD=∠B=35°,是等腰三角形.△ACD中,∠ADC=∠C=70°,是等腰三角形.

如图,在△ABC中,AD是△ABC的角平分线,AC=AB+BD,试说明∠B与2∠C相等的理论依据.

在AC上取一点E,使AE=AB,就可以证明ABD和AED全等.所以BD=ED,根据AC=AB+BD所以ED=EC,所以可以得到三角形EDC那两个底角相等,再根据外角的关系就可以得到了再问:点E是否要与

如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,△ABC以C为中心旋转到△A’B‘C的位置,顶点B在

∵△ABC以C为中心旋转到△A’B‘C的位置∴△ABC≌△A’B‘C∴∠B'=∠ABC=60°BC=B'C∴⊿BCB'是等边三角形∴∠BCB'=60°∴∠A'CB=30°∴∠BDC=180-°60°-

如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.

证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE(等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD和△AED中,∠CAD=∠EAD∠C=∠AEDAD