在正方形abcd中 p是bc上的点角pad平分线cq

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:23:04
1.在正方形ABCD中,P是BC上的一点,且BP=3PC,Q是CD的中点,则三角形ADQ相似QCP,为什么?

1∵DQ:PC=4:2=2:1AD:QC=4:2=2:1又∵∠D=∠C∴△ADQ∽△QCP2△ABO∽△DCO∵∠ABO=DCO(已知),∠AOB=∠COD(对顶角相等)∴△ABO∽△DCO

在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP垂直于NQ,MP与NQ是否相等

不知道你说的是不是这个图?现在我试着证明做QF垂直BC于F,再做PE垂直AB于E.因为四边形ABCD是正方形,QF垂直BC,PE垂直AB,所以PE=AD=AB==QF,得出:PE=QF,而且PE和QF

已知,如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点

相似,设正方形边长为a,因为P是BC上的点,且BP=3PC;所以PC=1/4a,又因为Q是CD的中点,所以DQ=QC=1/2a;所以AP=5/4a,AQ=√5/2a,PQ=√5/4a;所以,AP:AQ

如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.

证明:(1)∵AC是对角线∴∠ACD=∠ACB=45°∵PC=PC,BC=DC∴△BCP≌△DCP(2)∵PE=PB∴∠PBC=∠PEC∵△BCP≌△DCP∴∠PBC=∠PDC∴∠PBC=∠PDC=∠

在正方形ABCD中,P.Q分别是BC.CD上的点,角PAQ=45度,证BP+DQ=PQ

把△ABP,以A为原点旋转,使AB和AD重合,重合后的新三角形全等于△APQ所以BP+DQ=PQ

已知在正方形ABCD中,P是BC上的一点,且BP=3PC.Q是CD的中点.说明△ADQ∽△QCP

说明:∵BP=3PCBP+PC=BC∴PC=1/4BC又∵Q是CD的中点∴DQ=QC=1/2CD∴QC:AD=1:2PC:DQ=1:2∴QC:AD=PC:DQ又∵四边形ABCD是正方形∴∠C=∠D=9

在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD中点,三角形ADQ与三角形QCP是否相似?为什么

再问:具体点!?那个图可以倒过来吗再答:就是三角形的直角两个边的比率是一样的,所以两个三角形的形状是一样的,只是发现不一样再答:边角边再答:懂了吗再问:懂了,谢谢。再答:能请假一下吗再问:啥意思再问:

在正方形ABCD中,P是BC上的点,且BP=3PC,Q为CD中点,求证,AD*CP=(1/4)*AB的平方

让正方形边长为x.所以,AB=BC=CD=AD=X因为,BP=3PC,所以,BP=(3/4)X,PC=(1/4)X因为Q是CD的中点,所以,CQ=DQ=(1/2)CD=(1/2)x所以,左边=AD*C

如图,在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD的中点,试说明△ADQ∽△QCP

因为ABCD是正方形,Q是CD的中点,则有:角ADQ=角QCP=90度----------1QC=DC/2=AD/2,即AD:QC=2----------2又因BP=3PC,则有PC=BC/4=DC/

在正方形ABCD中,已知P是BC上的一点,且BP=3PC,Q是CD的中点,试说明AQ平分角DAP

证明:延长AQ,交BC的延长线于点E∵P是CD中点易证△ADQ≌△ECQ∴CE=AD设PC=1则BP=3,AB=4∴AP=5∵PE=PC+CE=1+4=5∴AP=PE∴∠E=∠PAE∵AD‖BC∴∠E

已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PCQ是CD的中点

问题是求证△ADQ∽△QCP?∵BP=3PC,∴PC=BC/4又ABCD为正方形,∴AB=BC=CD=DA∴PC=DA/4=CD/4又Q是CD中点,∴DQ=CQ=AB/2=BC/2=CD/2=DA/2

在正方形abcd中,点p是对角线ac上的一点,点e在BC的延长线上,且pe=pb.1.求证三角形

证明:(1)∵AC是对角线∴∠ACD=∠ACB=45°∵PC=PC,BC=DC∴△BCP≌△DCP(2)∵PE=PB∴∠PBC=∠PEC∵△BCP≌△DCP∴∠PBC=∠PDC∴∠PBC=∠PDC=∠

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度如图,已知,在正方形ABCD中,P、Q分

S三角形ADQ+S三角形ABP=S三角形APQ做AE等于AQ,延长CB到点E.因为正方形,所以AB=AD,∠D=∠ABP=90°,因为∠PAQ=45°,所以∠DAQ+∠BAP=45°在Rt△AEB与R

如图,已知,在正方形ABCD中,P.Q分别是BC.CD上的点,且∠PAQ=45度.求证:PB+DQ=PQ

证明:延长CD到点E,使DE=BP连接AE则△ADE≌△ABP(SAS)∴AE=AP,∠DAE=∠BAP∵∠DAB=90°,∠PAQ=45°∴∠BAP+∠DAQ=45°∴∠EAQ=45°=∠PAQ∵A

如图,在正方形ABCD中,P是BC上的一点,BE⊥AP于E,DF⊥AP于F,说明AE=DF

正方形ABCD中,因为AD⊥AB,所以角DAP+角BAP=90度,AD=AB;又因为DF⊥AP,所以三角形DAF是直角三角形,且角DAF+角ADF=90度;同理,BE⊥AP,所以三角形BAE是直角三角

如图,在正方形ABCD中,Q是CD的中点,P在BC上,且AP=PC+CD,求证:AQ平分∠DAP.

证明:如图,延长AQ交BC的延长线于E,∵四边形ABCD是正方形,∴AD=CD,AD∥BE;∵Q是CD的中点,∴△ADQ与△ECQ关于点Q成中心对称,∴AD=CE,∠1=∠E;∵AP=PC+CD,∴A

在正方形ABCD中,P,Q分别为BC和CD上的点,且角PAQ=45°,是说明BP+DQ=PQ

哎……简单说就是把△ABP绕A点旋转,使得AP边与AD边重合,做出来的三角形AP'D,证明△AQP和△AP'Q全等具体就是我慢慢说……证明:延长QD至P'使得DP'=BP,连结AP'由于ABCD是正方

如图,在边长为2的正方形ABCD中,点Q是BC中点,点P为对角线AC上一动点,连接PB、PQ,

BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=

如图,P是正方形ABCD的对角线AC上一点,E在BC上,且PB=PE

提示:先证明△BPC≌△DPC得到PB=PD=PE作PM⊥BC于M,PN⊥CD于点N再证△PEM≌△PND可得(1)PD=PE(2)PD⊥PE

如图,在正方形ABCD中,P为BC上一点,且BP=3PC,Q是CD的中点,求证,AQ平分∠PAD

设PC=X,则正方形ABCD边长为4X,∴CQ=DQ=2X,∴PC/DQ=CQ*QD=1/2,又∠C=∠D,∴ΔCPQ∽ΔDQA,∴∠PQC=∠DAQ,∵∠DAQ+∠DQA=90°,∴∠PQC+∠DQ