在正方形abcd中 m是ab的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 08:04:12
不知道你说的是不是这个图?现在我试着证明做QF垂直BC于F,再做PE垂直AB于E.因为四边形ABCD是正方形,QF垂直BC,PE垂直AB,所以PE=AD=AB==QF,得出:PE=QF,而且PE和QF
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此
1.过N点作NF垂直于BE因为正方形ABCD所以角ABC=角CBE=角A连结BN,因为BN为外角∠CBE的平分线所以角NBF=45=角BNF所以BF=BN因为DM⊥MN所以角AMD+角BMN=90度因
设O=AC∩BD则OM∥=PA/2﹙中位线﹚OM∈平面MBD.A不在平面MBD∴PA∥平面MBD
应该少条边吧点N在BC边上延长EM,DD1交于点P,延长FN,DC交与点Q,连接PQ,分别交D1C1,CC1于点H1,G1,证明点H1,G1分别与点H,G,重合证明方法基本都是平分线定理
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
(1)如图,在三角形ABC中,∠BAC=90度,AB=AC,BD⊥DE,CE⊥DE且DE过点A.求证:DE=BD+CE∠BAD+∠ABD=∠BAD+∠CAE=90度,所以∠ABD=∠CAE,又∠D=∠
如图,DG/EC=4/1 ∴FM/FC=3/5 设AF=a 则FM=3a/√5 cos∠AFM=-1
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
设CF和DE交于点O证明:∵AE=DFAD=DC∠EAD=∠FDC∴△EAD≌△FDC∴∠AED=∠DFC又∠ADE+∠AED=90°∴∠ADE+∠DFC=90°∴∠FOD=90°∴CF⊥DE
(1)因为SA垂直平面则AD垂直于SA.因为ABCD是正方形则AD垂直于AB所以AD垂直于平面SAB则AD垂直于SB(2)由(1)知AD垂直于平面SAB即BC垂直于平面SAB所以角BSC为直线SC与平
辅助线:过N做NG垂直BE于G由于角NMD为直角,那么角DMA+角NMG=90°则角NMG=角MDA又角NGM=角MAD=90° 则三角形MNG于DMA相似则有以下等式MG/NG=DA/MA
证明:(1)如图,连接DN,∵四边形ABCD是正方形,∴DN⊥AC∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC又DN∩DF=D,∴AC⊥平面DNF∵GN⊂平面DNF,∴GN⊥AC(2)取DC
证明:∵四边形ABCD是正方形∴OA=OB,∠BAM=∠CBN=45°∵MN‖AB∴OM=ON∴AM=BN∵AB=BC∴△ABM≌△CBN∴BM=CN
过点N作NE⊥AB于E易得△DAM∽△MEN所以NE/ME=AM/AD因为BN是平分角CBE,所以NE=BE可设NE=a、BE=a、BM=b、AM=c,则AD=AM+BM=b+c所以a/(b+c)=c
第一问用三角形全等证根据正方形的性质可知OA=OB=OC,AC⊥BD∵MN‖AB∴OM=ON又∵OB=OC,∠MOB=∠NOC∴△MOB≌△NOC∴BM=CN第二问延长CN交BM于点E∵△MOB≌△N
连接BD交AC于O,则OB=ODOB=ODDM=MSSB∥MOMO∈平面ACM所以SB∥平面ACM过M作MH∥SA交AD于H,则MH⊥平面DAC过H作HF∥BD交AC于E,则HF⊥AC,连接ME则角M
连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN
参考:延长AB和DN相交于点平P..先证△NBP≌△NCD,再证明MP=MD,从而∠MDP=∠P=∠CDN.
设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/