圆O为三角形ABC的外接圆,角A等于72度,求角BCO的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 06:53:52
因CG垂直于AB,则CD=DG且弧AC=AG;因弧AC等于弧CF,所以弧AG=CF;则角ACG=CAF所以三角形ACE为等腰三角形,AE=CE
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
我知道怎么做切线好证吧求ap的长只一个相似三角形就可连接ao延长交bc于d则bod∽aopod,bd皆可求出没问题了吧
由正弦定理:SinB/AC=2rSinB/2=3所以SinB=6
连接dc因为ad为直径所以角acd为直角角abc等于角cad又因为角abc和角adc弧ac所对应的圆周角所以两角相等即三角形cad为等腰直角三角形因为oa为5所以ad为10所以ac等于cd等于五倍的根
证明:连接BD,∵AD是圆O的直径∴∠ABD=90°∴∠BAD+∠D=90°∵∠D、∠C所对应圆弧都为劣弧AB∴∠D=∠C∴∠BAD+∠C=90°∵AH⊥BC∴∠CAH+∠C=90°∴∠BAD=∠CA
证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°
证明:连接BN∵B为圆上一点,CN为直径∴∠CBN=90∴∠NCB+∠BNC=90∵CM⊥AB∴∠ACM+∠BAC=90∵∠BAC、∠BNC所对应圆弧均为劣弧BC∴∠BAC=∠BNC∴∠NCB=∠AC
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B
连接BO,CO,角BOC是圆心角,和∠BAC是同弧,所以较BOC为60°,所以,半径为2cm,直径4cm
连接OD,因为EF是圆的切线,可知OD⊥EF△AOD为等腰三角形,∴∠2=∠3,AD平分∠CAO,可知∠1=∠2,得出∠1=∠3,内错角相等,可以得出AF∥OD,OD⊥EF,那么AF⊥EF.连接CB,
怎么说呢,很难说.我先口述,如果看不懂就发信息给我.内心即为角平分线交点所以∠BAO=∠OAC,角相等,所以弧BD=弧CD,等弧对等弦,所以BD=CD连接BO因为BO为∠B的角平分线,所以∠CBO=∠
PQ=2×1.2=2.4AB=√(BC²+AC²)=√(8²+6²)=10∵P为BC的中点∴PB=1/2BC=1/2×8=4过P做PE⊥AB,即∠PEB=90°
直接告诉你一个结论:正弦定理:在△ABC中,角A、B、C所对的边分别为a、b、c,则有 (a/sinA)=(b/sinB)=(c/sinC)=2R(R为三角形外接圆的半径)所以:2/sinC=2RR
(1)证:连接DB.三角形AFD和三角形ADB中,因为,角ADF=角ABD(弦切角定理),角FAD=角DAB(角平分线性质),所以,角AFD=角ADB=90度(直径对应的圆周角为90度),因而AF垂直
(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+
(1)∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC是正三角形.又∵CD是切线,∴∠OCD=90°.∴∠DCE=180°-60°-90°=30°.而ED⊥AB于F,∴∠CED=90
连接DC,角D=角B,AC垂直CD,求得CD=根号21,则角C正切为2/根号21,即得答案再问:角C正切为2/根号21??应该是角D吧??